How Proxy Works?

How Proxy Works?

 



 How Proxy Works?


In a network of computers, a Proxy (or a Proxy server) acts as an inter-mediator for relaying of requests from set of clients seeking resources from other set of servers. A Proxy generally while acting on the requests may filter the data based on specific requirement of the Proxy. Most web based Proxy's allows simple HTTP Content transfer like
  • Anonymous browsing - A Person may not be comfortable browsing the web while keeping his identity revealed..
  • Access to Blocked sites - ISP blocks several sites for unknown reasons and by using Proxy's we can browse them too..
  • Speed - Proxys use caching .. They cache web-pages from a web server and thus, provide much larger speed for access to resources
  • Malware analysis - Maybe we have some thinking about a random web-site that its containing malwares like cookie stealers etc etc...So we can test them by using proxy's...
  • Country/Region Restriction - Some sites have regional/country restrictions like some sites only provide some features to U.S citizens only...So we can get hold of this problem..
  •  


Uses

A proxy server has a variety of potential purposes, including:
  • To keep machines behind it anonymous, mainly for security.
  • To speed up access to resources (using caching). Web proxies are commonly used to cache web pages from a web server.
  • To prevent downloading the same content multiple times (and save bandwidth).
  • To log / audit usage, e.g. to provide company employee Internet usage reporting.
  • To scan transmitted content for malware before delivery.
  • To scan outbound content, e.g., for data loss prevention.
  • Access enhancement/restriction
    • To apply access policy to network services or content, e.g. to block undesired sites.
    • To access sites prohibited or filtered by your ISP or institution.
    • To bypass security / parental controls.
    • To circumvent Internet filtering to access content otherwise blocked by governments.
    • To allow a web site to make web requests to externally hosted resources (e.g. images, music files, etc.) when cross-domain restrictions prohibit the web site from linking directly to the outside domains.
    • To allow the browser to make web requests to externally hosted content on behalf of a website when cross-domain restrictions (in place to protect websites from the likes of data theft) prohibit the browser from directly accessing the outside domains.

Types of proxy

A proxy server may run right on the user's local computer, or at various points between the user's computer and destination servers on the Internet.
  • A proxy server that passes requests and responses unmodified is usually called a gateway or sometimes a tunneling proxy.
  • A forward proxy is an Internet-facing proxy used to retrieve from a wide range of sources (in most cases anywhere on the Internet).
  • A reverse proxy is usually an Internet-facing proxy used as a front-end to control and protect access to a server on a private network, commonly also performing tasks such as load-balancing, authentication, decryption or caching.

Forward proxies

A proxy server connecting an internal network and the Internet.
A forward proxy taking requests from an internal network and forwarding them to the Internet.
Forward proxies are proxies where the client server names the target server to connect to. Forward proxies are able to retrieve from a wide range of sources (in most cases anywhere on the Internet).
The terms "forward proxy" and "forwarding proxy" are a general description of behavior (forwarding traffic) and thus ambiguous. Except for Reverse proxy, the types of proxies described in this article are more specialized sub-types of the general forward proxy concept.

Open proxies

Diagram of proxy server connected to the Internet.
An open proxy forwarding requests from and to anywhere on the Internet.
An open proxy is a forwarding proxy server that is accessible by any Internet user. Gordon Lyon estimates there are "hundreds of thousands" of open proxies on the Internet.An anonymous open proxy allows users to conceal their IP address while browsing the Web or using other Internet services. There are varying degrees of anonymity however, as well as a number of methods of 'tricking' the client into revealing itself regardless of the proxy being used.

Reverse proxies

A proxy server connecting the Internet to an internal network.
A reverse proxy taking requests from the Internet and forwarding them to servers in an internal network. Those making requests connect to the proxy and may not be aware of the internal network.
A reverse proxy (or surrogate) is a proxy server that appears to clients to be an ordinary server. Requests are forwarded to one or more origin servers which handle the request. The response is returned as if it came directly from the web server.
Reverse proxies are installed in the neighborhood of one or more web servers. All traffic coming from the Internet and with a destination of one of the neighborhood's web servers goes through the proxy server. The use of "reverse" originates in its counterpart "forward proxy" since the reverse proxy sits closer to the web server and serves only a restricted set of websites.
There are several reasons for installing reverse proxy servers:
  • Encryption / SSL acceleration: when secure web sites are created, the SSL encryption is often not done by the web server itself, but by a reverse proxy that is equipped with SSL acceleration hardware. See Secure Sockets Layer. Furthermore, a host can provide a single "SSL proxy" to provide SSL encryption for an arbitrary number of hosts; removing the need for a separate SSL Server Certificate for each host, with the downside that all hosts behind the SSL proxy have to share a common DNS name or IP address for SSL connections. This problem can partly be overcome by using the SubjectAltName feature of X.509 certificates.
  • Load balancing: the reverse proxy can distribute the load to several web servers, each web server serving its own application area. In such a case, the reverse proxy may need to rewrite the URLs in each web page (translation from externally known URLs to the internal locations).
  • Serve/cache static content: A reverse proxy can offload the web servers by caching static content like pictures and other static graphical content.
  • Compression: the proxy server can optimize and compress the content to speed up the load time.
  • Spoon feeding: reduces resource usage caused by slow clients on the web servers by caching the content the web server sent and slowly "spoon feeding" it to the client. This especially benefits dynamically generated pages.
  • Security: the proxy server is an additional layer of defense and can protect against some OS and WebServer specific attacks. However, it does not provide any protection to attacks against the web application or service itself, which is generally considered the larger threat.
  • Extranet Publishing: a reverse proxy server facing the Internet can be used to communicate to a firewalled server internal to an organization, providing extranet access to some functions while keeping the servers behind the firewalls. If used in this way, security measures should be considered to protect the rest of your infrastructure in case this server is compromised, as its web application is exposed to attack from the Internet.

Performance Enhancing Proxies

A proxy that is designed to mitigate specific link related issues or degradations. PEPs (Performance Enhancing Proxies) are typically used to improve TCP performance in the presence of high Round Trip Times (RTTs) and wireless links with high packet loss. They are also frequently used for highly asynchronous links featuring very different upload and download rates.

Uses of proxy servers

Filtering

A content-filtering web proxy server provides administrative control over the content that may be relayed in one or both directions through the proxy. It is commonly used in both commercial and non-commercial organizations (especially schools) to ensure that Internet usage conforms to acceptable use policy. In some cases users can circumvent the proxy, since there are services designed to proxy information from a filtered website through a non filtered site to allow it through the user's proxy.
A content filtering proxy will often support user authentication, to control web access. It also usually produces logs, either to give detailed information about the URLs accessed by specific users, or to monitor bandwidth usage statistics. It may also communicate to daemon-based and/or ICAP-based antivirus software to provide security against virus and other malware by scanning incoming content in real time before it enters the network.
Many work places, schools, and colleges restrict the web sites and online services that are made available in their buildings. This is done either with a specialized proxy, called a content filter (both commercial and free products are available), or by using a cache-extension protocol such as ICAP, that allows plug-in extensions to an open caching architecture.
Some common methods used for content filtering include: URL or DNS blacklists, URL regex filtering, MIME filtering, or content keyword filtering. Some products have been known to employ content analysis techniques to look for traits commonly used by certain types of content providers.
Requests made to the open internet must first pass through an outbound proxy filter. The web-filtering company provides a database of URL patterns (regular expressions) with associated content attributes. This database is updated weekly by site-wide subscription, much like a virus filter subscription. The administrator instructs the web filter to ban broad classes of content (such as sports, pornography, online shopping, gambling, or social networking). Requests that match a banned URL pattern are rejected immediately.
Assuming the requested URL is acceptable, the content is then fetched by the proxy. At this point a dynamic filter may be applied on the return path. For example, JPEG files could be blocked based on fleshtone matches, or language filters could dynamically detect unwanted language. If the content is rejected then an HTTP fetch error is returned and nothing is cached.
Most web filtering companies use an internet-wide crawling robot that assesses the likelihood that a content is a certain type. The resultant database is then corrected by manual labor based on complaints or known flaws in the content-matching algorithms.

Filtering of encrypted data

Web filtering proxies are not able to peer inside secure sockets HTTP transactions, assuming the chain-of-trust of SSL/TLS has not been tampered with.
The SSL/TLS chain-of-trust relies on trusted root certificate authorities. In a workplace setting where the client is managed by the organization, trust might be granted to a root certificate whose private key is known to the proxy. Concretely, a root certificate generated by the proxy is installed into the browser CA list by IT staff.
In such scenarios, proxy analysis of the contents of a SSL/TLS transaction becomes possible. The proxy is effectively operating a man-in-the-middle attack, allowed by the client's trust of a root certificate the proxy owns.

Caching

A caching proxy server accelerates service requests by retrieving content saved from a previous request made by the same client or even other clients. Caching proxies keep local copies of frequently requested resources, allowing large organizations to significantly reduce their upstream bandwidth usage and costs, while significantly increasing performance. Most ISPs and large businesses have a caching proxy. Caching proxies were the first kind of proxy server. Some poorly implemented caching proxies have had downsides (e.g., an inability to use user authentication). Some problems are described in RFC 3143 (Known HTTP Proxy/Caching Problems). Another important use of the proxy server is to reduce the hardware cost. An organization may have many systems on the same network or under control of a single server, prohibiting the possibility of an individual connection to the Internet for each system. In such a case, the individual systems can be connected to one proxy server, and the proxy server connected to the main server.

Translation

A translation proxy is a proxy server that is used to localize a website experience for different markets. Traffic from global audiences is routed through the translation proxy to the source website. As visitors browse the proxied site, requests go back to the source site where pages are rendered. Original language content in the response is replaced by translated content as it passes back through the proxy. The translations used in a translation proxy can be either machine translation, human translation, or a combination of machine and human translation. Different translation proxy implementations have different capabilities. Some allow further customization of the source site for local audiences such as excluding source content or substituting source content with original local content.

DNS proxy

A DNS proxy server takes DNS queries from a (usually local) network and forwards them to an Internet Domain Name Server. It may also cache DNS records.

Bypassing filters and censorship

If the destination server filters content based on the origin of the request, the use of a proxy can circumvent this filter. For example, a server using IP-based geolocation to restrict its service to a certain country can be accessed using a proxy located in that country to access the service. Likewise, an incorrectly configured proxy can provide access to a network otherwise isolated from the Internet.

Logging and eavesdropping

Proxies can be installed in order to eavesdrop upon the data-flow between client machines and the web. All content sent or accessed – including passwords submitted and cookies used – can be captured and analyzed by the proxy operator. For this reason, passwords to online services (such as webmail and banking) should always be exchanged over a cryptographically secured connection, such as SSL. By chaining proxies which do not reveal data about the original requester, it is possible to obfuscate activities from the eyes of the user's destination. However, more traces will be left on the intermediate hops, which could be used or offered up to trace the user's activities. If the policies and administrators of these other proxies are unknown, the user may fall victim to a false sense of security just because those details are out of sight and mind. In what is more of an inconvenience than a risk, proxy users may find themselves being blocked from certain Web sites, as numerous forums and Web sites block IP addresses from proxies known to have spammed or trolled the site. Proxy bouncing can be used to maintain your privacy.

Accessing services anonymously

An anonymous proxy server (sometimes called a web proxy) generally attempts to anonymize web surfing. There are different varieties of anonymizers. The destination server (the server that ultimately satisfies the web request) receives requests from the anonymizing proxy server, and thus does not receive information about the end user's address. The requests are not anonymous to the anonymizing proxy server, however, and so a degree of trust is present between the proxy server and the user. Many proxy servers are funded through a continued advertising link to the user. Access control: Some proxy servers implement a logon requirement. In large organizations, authorized users must log on to gain access to the web. The organization can thereby track usage to individuals. Some anonymizing proxy servers may forward data packets with header lines such as HTTP_VIA, HTTP_X_FORWARDED_FOR, or HTTP_FORWARDED, which may reveal the IP address of the client. Other anonymizing proxy servers, known as elite or high-anonymity proxies, only include the REMOTE_ADDR header with the IP address of the proxy server, making it appear that the proxy server is the client. A website could still suspect a proxy is being used if the client sends packets which include a cookie from a previous visit that did not use the high-anonymity proxy server. Clearing cookies, and possibly the cache, would solve this problem.

Implementations of proxies

Transparent proxy

Also known as an intercepting proxy, inline proxy, or forced proxy, a transparent proxy intercepts normal communication at the network layer without requiring any special client configuration. Clients need not be aware of the existence of the proxy. A transparent proxy is normally located between the client and the Internet, with the proxy performing some of the functions of a gateway or router.
RFC 2616 (Hypertext Transfer Protocol—HTTP/1.1) offers standard definitions:
"A 'transparent proxy' is a proxy that does not modify the request or response beyond what is required for proxy authentication and identification".
"A 'non-transparent proxy' is a proxy that modifies the request or response in order to provide some added service to the user agent, such as group annotation services, media type transformation, protocol reduction, or anonymity filtering".
In 2009 a security flaw in the way that transparent proxies operate was published by Robert Auger, and the Computer Emergency Response Team issued an advisory listing dozens of affected transparent and intercepting proxy servers.

Purpose

Intercepting proxies are commonly used in businesses to prevent avoidance of acceptable use policy, and to ease administrative burden, since no client browser configuration is required. This second reason however is mitigated by features such as Active Directory group policy, or DHCP and automatic proxy detection.
Intercepting proxies are also commonly used by ISPs in some countries to save upstream bandwidth and improve customer response times by caching. This is more common in countries where bandwidth is more limited (e.g. island nations) or must be paid for.

Issues

The diversion / interception of a TCP connection creates several issues. Firstly the original destination IP and port must somehow be communicated to the proxy. This is not always possible (e.g. where the gateway and proxy reside on different hosts). There is a class of cross site attacks that depend on certain behaviour of intercepting proxies that do not check or have access to information about the original (intercepted) destination. This problem may be resolved by using an integrated packet-level and application level appliance or software which is then able to communicate this information between the packet handler and the proxy.
Intercepting also creates problems for HTTP authentication, especially connection-oriented authentication such as NTLM, since the client browser believes it is talking to a server rather than a proxy. This can cause problems where an intercepting proxy requires authentication, then the user connects to a site which also requires authentication.
Finally intercepting connections can cause problems for HTTP caches, since some requests and responses become uncacheable by a shared cache.

Implementation methods

In integrated firewall / proxy servers where the router/firewall is on the same host as the proxy, communicating original destination information can be done by any method, for example Microsoft TMG or WinGate.
Interception can also be performed using Cisco's WCCP (Web Cache Control Protocol). This proprietary protocol resides on the router and is configured from the cache, allowing the cache to determine what ports and traffic is sent to it via transparent redirection from the router. This redirection can occur in one of two ways: GRE Tunneling (OSI Layer 3) or MAC rewrites (OSI Layer 2).
Once traffic reaches the proxy machine itself interception is commonly performed with NAT (Network Address Translation). Such setups are invisible to the client browser, but leave the proxy visible to the web server and other devices on the internet side of the proxy. Recent Linux and some BSD releases provide TPROXY (transparent proxy) which performs IP-level (OSI Layer 3) transparent interception and spoofing of outbound traffic, hiding the proxy IP address from other network devices.

Detection

There are several methods that can often be used to detect the presence of an intercepting proxy server:
  • By comparing the client's external IP address to the address seen by an external web server, or sometimes by examining the HTTP headers received by a server. A number of sites have been created to address this issue, by reporting the user's IP address as seen by the site back to the user in a web page.[http://www.dslreports.com/ip
  • By comparing the result of online IP checkers when accessed using https vs http, as most intercepting proxies do not intercept SSL. If there is suspicion of SSL being intercepted, one can examine the certificate associated with any secure web site, the root certificate should indicate whether it was issued for the purpose of intercepting.
  • By comparing the sequence of network hops reported by a tool such as traceroute for a proxied protocol such as http (port 80) with that for a non proxied protocol such as SMTP (port 25). 
  • By attempting to make a connection to an IP address at which there is known to be no server. The proxy will accept the connection and then attempt to proxy it on. When the proxy finds no server to accept the connection it may return an error message or simply close the connection to the client. This difference in behaviour is simple to detect. For example most web browsers will generate a browser created error page in the case where they cannot connect to an HTTP server but will return a different error in the case where the connection is accepted and then closed.
  • By serving the end-user specially programmed Adobe Flash SWF applications or Sun Java applets that send HTTP calls back to their server.

CGI proxy

A CGI web proxy passes along HTTP protocol requests like any other proxy server. However, the web proxy accepts target URLs within a user's browser window, processes the request, and then displays the contents of the requested URL immediately back within the user's browser. This is generally quite different than a corporate internet proxy which some people mistakenly refer to as a web proxy.
They generally use PHP or CGI to implement the proxy functionality. These types of proxies are frequently used to gain access to web sites blocked by corporate or school proxies. Since they also hide the user's own IP address from the web sites they access through the proxy, they are sometimes also used to gain a degree of anonymity, called "Proxy Avoidance".
However, if a network administrator monitors filtered URLs by frequency of use, CGI proxies are easy to detect because every data request for pages and page elements such as images are being redirected through the single CGI proxy URL.

Anonymous HTTPS proxy

Users wanting to bypass web filtering, that want to prevent anyone from monitoring what they are doing, will typically search the internet for an open and anonymous HTTPS transparent proxy. They will then program their browser to proxy all requests through the web filter to this anonymous proxy. Those requests will be encrypted with https. The web filter cannot distinguish these transactions from, say, a legitimate access to a financial website. Thus, content filters are only effective against unsophisticated users.
Use of HTTPS proxies are detectable even without examining the encrypted data, based simply on firewall monitoring of addresses for frequency of use and bandwidth usage. If a massive amount of data is being directed through an address that is within an ISP address range such as Comcast, it is likely a home-operated proxy server. Either the single address or the entire ISP address range is then blocked at the firewall to prevent further connections.

Suffix proxy

A suffix proxy allows a user to access web content by appending the name of the proxy server to the URL of the requested content (e.g. "en.wikipedia.org.SuffixProxy.com"). Suffix proxy servers are easier to use than regular proxy servers but they do not offer high levels of anonymity and their primary use is for bypassing web filters. However, this is rarely used due to more advanced web filters.

Tor onion proxy software

Screenshot of computer program showing computer locations on a world map.
The Vidalia Tor-network map.
Tor (short for The Onion Router) is a system intended to enable online anonymity.Tor client software routes Internet traffic through a worldwide volunteer network of servers in order to conceal a user's location or usage from someone conducting network surveillance or traffic analysis. Using Tor makes it more difficult to trace Internet activity, including "visits to Web sites, online posts, instant messages and other communication forms", back to the user. It is intended to protect users' personal freedom, privacy, and ability to conduct confidential business by keeping their internet activities from being monitored.
"Onion routing" refers to the layered nature of the encryption service: The original data are encrypted and re-encrypted multiple times, then sent through successive Tor relays, each one of which decrypts a "layer" of encryption before passing the data on to the next relay and ultimately the destination. This reduces the possibility of the original data being unscrambled or understood in transit.
The Tor client is free software, and there are no additional charges to use the network.

I2P anonymous proxy

The I2P anonymous network ('I2P') is a proxy network aiming at online anonymity. It implements garlic routing, which is an enhancement of Tor's onion routing. I2P is fully distributed and works by encrypting all communications in various layers and relaying them through a network of routers run by volunteers in various locations. By keeping the source of the information hidden, I2P offers censorship resistance. The goals of I2P are to protect users' personal freedom, privacy, and ability to conduct confidential business.
Each user of I2P runs an I2P router on their computer (node). The I2P router takes care of finding other peers and building anonymizing tunnels through them. I2P provides proxies for all protocols (HTTP, irc, SOCKS, ...).
The software is free and open-source, and the network is free of charge to use.

Proxy vs. NAT

Most of the time 'proxy' refers to a layer-7 application on the OSI reference model. However, another way of proxying is through layer-3 and is known as Network Address Translation (NAT). The difference between these two technologies is the tier in which they operate, and the way of configuring the clients to use them as a proxy.
In client configuration of NAT, configuring the gateway is sufficient. However, for client configuration of a layer-7 proxy, the destination of the packets that the client generates must always be the proxy server (layer-7), then the proxy server reads each packet and finds out the true destination.
Because NAT operates at layer-3, it is less resource-intensive than the layer-7 proxy, but also less flexible. As we compare these two technologies, we might encounter a terminology known as 'transparent firewall'. Transparent firewall means that the layer-3 proxy uses the layer-7 proxy advantages without the knowledge of the client. The client presumes that the gateway is a NAT in layer-3, and it does not have any idea about the inside of the packet, but through this method the layer-3 packets are sent to the layer-7 proxy for investigation.

 

 

Approaches to proxy



Proxies are commonly used for several reasons: security, load balancing, data caching in order to reduce bandwidth demands, and censorship or filtering. Filtering proxies insulate you from objectionable elements of Webpages such as cookies, ad banners, dynamic content like Javascript, Java Applets and ActiveX controls. Some anonymous proxies encrypt your communications to protect you from monitoring and surveillance. Be careful, though, not all proxies are anonymous or secure! Here is an overview of the basic approaches to proxy:



Web-based Proxies:


Web-based Proxies are powered by server-side softwares such as CGIProxy, PHProxy, Glype, and custom proxy scripts. These proxies work entirely through a web browser. Usually all that is needed to hide your IP address and surf anonymously is to visit the service's homepage in a web browser and enter a URL (website address) in the form provided. There is no requirement to download or install software or reconfigure your computer. To work, a CGI based proxy must manipulate the document you've requested and all its associated elements and objects. This can be tricky, and not all proxies are as efficient or effective as others. Some services are slow and may produce errors while rendering the many variations of webpage code. But they are popular, and easy to use.



Proxy Software and VPN Service:


What is VPN?


A Virtual Private Network (VPN) is a network technology that creates a secure network connection over a public network such as the Internet or a private network owned by a service provider. Large corporations, educational institutions, and government agencies use VPN technology to enable remote users to securely connect to a private network.

A VPN can connect multiple sites over a large distance just like a Wide Area Network (WAN). VPNs are often used to extend intranets worldwide to disseminate information and news to a wide user base. Educational institutions use VPNs to connect campuses that can be distributed across the country or around the world.

In order to gain access to the private network, a user must be authenticated using a unique identification and a password. An authentication token is often used to gain access to a private network through a personal identification number (PIN) that a user must enter. The PIN is a unique authentication code that changes according to a specific frequency, usually every 30 seconds or so.


Protocols


There are a number of VPN protocols in use that secure the transport of data traffic over a public network infrastructure. Each protocol varies slightly in the way that data is kept secure.

IP security (IPSec) is used to secure communications over the Internet. IPSec traffic can use either transport mode or tunneling to encrypt data traffic in a VPN. The difference between the two modes is that transport mode encrypts only the message within the data packet (also known as the payload) while tunneling encrypts the entire data packet. IPSec is often referred to as a "security overlay" because of its use as a security layer for other protocols.

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) use cryptography to secure communications over the Internet. Both protocols use a "handshake" method of authentication that involves a negotiation of network parameters between the client and server machines. To successfully initiate a connection, an authentication process involving certificates is used. Certificates are cryptographic keys that are stored on both the server and client.

Point-To-Point Tunneling Protocol (PPTP) is another tunneling protocol used to connect a remote client to a private server over the Internet. PPTP is one of the most widely used VPN protocols because of it's straightforward configuration and maintenance and also because it is included with the Windows operating system.

Layer 2 Tunneling Protocol (L2TP) is a protocol used to tunnel data communications traffic between two sites over the Internet. L2TP is often used in tandem with IPSec (which acts as a security layer) to secure the transfer of L2TP data packets over the Internet. Unlike PPTP, a VPN implementation using L2TP/IPSec requires a shared key or the use of certificates.

VPN technology employs sophisticated encryption to ensure security and prevent any unintentional interception of data between private sites. All traffic over a VPN is encrypted using algorithms to secure data integrity and privacy. VPN architecture is governed by a strict set of rules and standards to ensure a private communication channel between sites. Corporate network administrators are responsible for deciding the scope of a VPN, implementing and deploying a VPN, and ongoing monitoring of network traffic across the network firewall. A VPN requires administrators to be continually be aware of the overall architecture and scope of the VPN to ensure communications are kept private.

Advantages and Disadvantages


A VPN is a inexpensive effective way of building a private network. The use of the Internet as the main communications channel between sites is a cost effective alternative to expensive leased private lines. The costs to a corporation include the network authentication hardware and software used to authenticate users and any additional mechanisms such as authentication tokens or other secure devices. The relative ease, speed, and flexibility of VPN provisioning in comparison to leased lines makes VPNs an ideal choice for corporations who require flexibility. For example, a company can adjust the number of sites in the VPN according to changing requirements.

There are several potential disadvantages with VPN use. The lack of Quality of Service (QoS) management over the Internet can cause packet loss and other performance issues. Adverse network conditions that occur outside of the private network is beyond the control of the VPN administrator. For this reason, many large corporations pay for the use of trusted VPNs that use a private network to guarantee QoS. Vendor interoperability is another potential disadvantage as VPN technologies from one vendor may not be compatible with VPN technologies from another vendor. Neither of these disadvantages have prevented the widespread acceptance and deployment of VPN technology.

SOCKS Proxy


What is a SOCKS proxy server?


Though this protocol was developed long ago enough, it is rather new (compared to the HTTP proxy). SOCKS allows to work with any (version SOCKS 4 - with TCP, SOCKS 5 - with TCP and UDP) protocols. A socks proxy simply transfers data from a client to a server, not penetrating into this data contents (therefore it can work with HTTP, FTP, SMTP, POP3, NNTP, etc.).

Anonymity of a SOCKS Proxy


As SOCKS (as it was already marked above) transfers all data from a client to a server, nothing adding from itself, from the point of view of a web-server, a socks proxy is a client. Therefore anonymity of this type of proxy servers is really always absolute.


Using SOCKS Proxies


At present time there exist 2 versions of the SOCKS protocol: 4 and 5. The 4th version, as it appeared earlier, is more widespread. However, now the 5th version is also supported by many popular programs such as ICQ (old ICQ versions, in general, could use only SOCKS proxies), Napster, AudioGalaxy, Emule etc. Generally speaking, as a SOCKS proxy can "proxy" any TCP / UDP protocol, it could be used also by mail programs, but they do not do it. Therefore, for such programs (which cannot work with socks) there was developed a special software automatically enabling TCP and UDP networking client applications to traverse a SOCKS server.

HTTP Proxy


What is HTTP proxy server?


HTTP proxy server is a proxy, allowing working on the Internet with HTTP and (not always) FTP protocols. It (as well as other proxy servers) can carry out caching of information downloaded from the Internet.

Let's have a more detailed look over its abilities.

Anonymity of HTTP Proxy


HTTP proxy servers have several anonymity levels. It depends on purposes, which a proxy is used for, so an anonymity requirement is not always an essential one. Conditionally HTTP proxy servers by their anonymity degree could be divided onto:

Transparent - these proxies are not anonymous. They, first, let a web server know that there is used a proxy server and, secondly, "give away" an IP-address of a client. The task of such proxies, as a rule, is information caching and/or support of Internet access for several computers via single connection.

Anonymous - these proxy servers let a remote computer (web-server) know, that there is used a proxy, however, they do not pass an IP-address of a client.

Distorting - unlike the previous type, they transfer an IP-address to a remote web-server, however, this address is a phantom: randomly generated by a proxy server or any fixed (not your) IP. So, these proxies distort your IP address from the point of view of a web-server.

High anonymous (elite) - they do not send your IP-address to a remote computer. Also, they do not inform that there is used any proxy server! So, a web-server "thinks" that it works directly with a client.

This anonymity classification is rather conventional. There are many other classifications, specifying / expanding / generalizing this one.


Using HTTP Proxies


Now HTTP proxy servers are the most widespread. Their support (ability to use them) is included into many programs: browsers, download managers etc. However, their support is not realized at a level of an operating system - in order to use them, you should configure all programs, which should use proxies, in an appropriate way.
 __________________________________________________________________________

IMAGES : HOW PROXY WORKS ?

                 
         NETWORK OF PROXY.


 IMAGENARY NETWORK OF PROXY.

________________________________________________


1 comments:

avatar

I love what you guys are usually up too. This kind of clever work and coverage!
Keep up the superb works guys I've you guys to our blogroll.

Feel free to surf to my weblog: free anonymous proxy

Balas

Tell your suggestion or comment,it will help us...